Author:
Teerlink Craig C.,Jurynec Michael J,Hernandez Rolando,Stevens Jeff,Hughes Dana C.,Brunker Cherie P.,Rowe Kerry,Grunwald David J.,Facelli Julio C.,Cannon-Albright Lisa A.
Abstract
ABSTRACTOsteoporosis is a common skeletal disorder characterized by deterioration of bone tissue in later life. The set of genetic factors contributing to osteoporosis is not completely specified. High-risk osteoporosis pedigrees were analyzed to identify genes that may confer susceptibility to disease. Candidate predisposition variants were identified initially by whole exome sequencing of affected-relative-pairs, approximately cousins, from ten pedigrees. Variants were filtered on the basis of population frequency, concordance between pairs of cousins, affecting a gene associated with osteoporosis, and likelihood to have functionally damaging, pathogenic consequences. Subsequently variants were tested for segregation in 68 additional relatives of the index carriers. A rare variant in MEGF6 (rs755467862) showed strong evidence of segregation with the disease phenotype. Predicted protein folding indicated the variant (Cys200Tyr) may disrupt structure of an EGF-like calcium-binding domain of MEGF6. Functional analyses demonstrated that complete loss of the paralogous genes megf6a and megf6b in zebrafish resulted in significant delay of cartilage and bone formation. Segregation analyses, in-silico protein structure modeling, and functional assays support a role for MEGF6 in predisposition to osteoporosis.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献