Medical data and machine learning improve power of stroke genome-wide association studies

Author:

Thangaraj Phyllis M.,Gisladottir Undina,Tatonetti Nicholas P.ORCID

Abstract

AbstractGenome-wide association studies (GWAS) may require enrollment of up to millions of participants to power variant discovery. This requires manual curation of cases and controls with large-scale collaborations. Biobanks connected to electronic health records (EHR) can facilitate these studies by using data from clinical care systems, like billing diagnosis codes, as phenotypes. These systems, however, do not define adjudicated cases and controls. We developed QTPhenProxy, a machine learning model that adds nuance to cohort classification by assigning everyone in a cohort a probability of having the study disease. We then ran a GWAS using the probabilities as a quantitative trait. With an order of magnitude fewer cases than the largest stroke GWAS, our method outperformed previous methods at replicating known variants in stroke and discovered a novel variant in ABCG8 associated with intracerebral hemorrhage in the UK Biobank that replicated in the MEGASTROKE GWA meta-analysis. QTPhenProxy expands traditional phenotyping to improve the power of GWAS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3