Phosphorylation-Dependent Assembly of a 14-3-3 Mediated Signaling Complex During Red Blood Cell Invasion by Plasmodium falciparum Merozoites

Author:

More Kunal R.,Kaur Inderjeet,Gianetto Quentin Giai,Invergo Brandon M.ORCID,Chaze Thibault,Jain Ravi,Huon Christéle,Gutenbrunner Petra,Weisser Hendrik,Matondo Mariette,Choudhary Jyoti S.,Langsley Gordon,Singh Shailja,Chitnis Chetan E.

Abstract

AbstractRed blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/ low K+) out of which 143 were Ca2+-dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using co-immunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multi-protein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+ dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multi-protein complex. Disruption of the multi-protein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood stage growth of malaria parasites.ImportanceInvasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we have used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation dependent multi-protein complex including signaling kinases assembles during the process of invasion. Disruption of this multi-protein complex impairs merozoite invasion of RBCs providing a novel approach for the development of inhibitors to block the growth of blood stage malaria parasites.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3