Postglacial migration across a large dispersal barrier outpaces regional expansion from glacial refugia: evidence from two conifers in the Pacific Northwest

Author:

Fernandez MCORCID,Hu FS,Gavin DG,deLafontaine G,Heath KD

Abstract

AbstractUnderstanding how climate refugia and migration over great distances have facilitated species survival during periods of past climate change is crucial for evaluating contemporary threats to biodiversity. In addition to tracking a changing climate, extant species must face complex, anthropogenically fragmented landscapes. The dominant conifer species in the mesic temperate forests of the Pacific Northwest are split by the arid rain-shadow of the Cascade Range into coastal and interior distributions, with continued debate over the origins of the interior populations. If the Last Glacial Maximum extirpated populations in the interior then postglacial migration across the arid divide would have been necessary to create the current distribution, whereas interior refugial persistence could have locally repopulated the disjunction. These alternative scenarios have significant implications for the postglacial development of the Pacific Northwest mesic forests and the impact of dispersal barriers during periods of climate change. Here we use genotyping-by-sequencing (ddRADseq) and phylogeographical modeling to show that the postglacial expansion of both mountain hemlock and western redcedar consisted largely of long-distance spread inland in the direction of dominant winds, with limited expansion from an interior redcedar refugium. Our results for these two key mesic conifers, along with fossil pollen data, address the longstanding question on the development of the Pacific Northwest mesic forests and contrast with many recent studies emphasizing the role of cryptic refugia in colonizing modern species ranges.Statement of SignificanceUnderstanding whether habitat fragmentation hinders range shifts as species track a changing climate presents a pressing challenge for biologists. Species with disjunct distributions provide a natural laboratory for studying the effects of fragmentation during past periods of climate change. We find that dispersal across a 50-200-km inhospitable barrier characterized the expansion of two conifer species since the last ice age. The importance of migration, and minimal contribution of more local glacial refugia, contrasts with many recent studies emphasizing the role of microrefugia in populating modern species distributions. Our results address a longstanding question on the development of the disjunct mesic conifer forests of the Pacific Northwest and offer new insights into the spatiotemporal patterns of refugial populations and postglacial vegetation development previously unresolved despite decades of paleoecological studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3