Mixed Logistic Regression in Genome-Wide Association Studies

Author:

Milet JacquelineORCID,Perdry HervéORCID

Abstract

AbstractMotivationMixed linear models (MLM) have been widely used to account for population structure in case-control genome-wide association studies, the status being analyzed as a quantitative phenotype. Chen et al. proved that this method is inappropriate and proposed a score test for the mixed logistic regression (MLR). However this test does not allow an estimation of the variants’ effects.ResultsWe propose two computationally efficient methods to estimate the variants’ effects. Their properties are evaluated on two simulations sets, and compared with other methods (MLM, logistic regression). MLR performs the best in all circumstances. The variants’ effects are well evaluated by our methods, with a moderate bias when the effect sizes are large. Additionally, we propose a stratified QQ-plot, enhancing the diagnosis of p-values inflation or deflation, when population strata are not clearly identified in the sample.AvailabilityAll methods are implemented in the R package milorGWAS available at https://github.com/genostats/milorGWAS.Contactherve.perdry@u-psud.frSupplementary informationSupplementary data are available at Bioinformatics online.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3