Abstract
AbstractMotivationMixed linear models (MLM) have been widely used to account for population structure in case-control genome-wide association studies, the status being analyzed as a quantitative phenotype. Chen et al. proved that this method is inappropriate and proposed a score test for the mixed logistic regression (MLR). However this test does not allow an estimation of the variants’ effects.ResultsWe propose two computationally efficient methods to estimate the variants’ effects. Their properties are evaluated on two simulations sets, and compared with other methods (MLM, logistic regression). MLR performs the best in all circumstances. The variants’ effects are well evaluated by our methods, with a moderate bias when the effect sizes are large. Additionally, we propose a stratified QQ-plot, enhancing the diagnosis of p-values inflation or deflation, when population strata are not clearly identified in the sample.AvailabilityAll methods are implemented in the R package milorGWAS available at https://github.com/genostats/milorGWAS.Contactherve.perdry@u-psud.frSupplementary informationSupplementary data are available at Bioinformatics online.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献