Identification of a blood test-based biomarker of aging through deep learning of aging trajectories in large phenotypic datasets of mice

Author:

Avchaciov Konstantin,Antoch Marina P.,Andrianova Ekaterina L.,Tarkhov Andrei E.,Menshikov Leonid I.,Burmistrova Olga,Gudkov Andrei V.,Fedichev Peter O.

Abstract

We proposed and characterized a novel biomarker of aging and frailty in mice trained from the large set of the most conventional, easily measured blood parameters such as Complete Blood Counts (CBC) from the open-access Mouse Phenome Database (MPD). Instead of postulating the existence of an aging clock associated with any particular subsystem of an aging organism, we assumed that aging arises cooperatively from positive feedback loops spanning across physiological compartments and leading to an organism-level instability of the underlying regulatory network. To analyze the data, we employed a deep artificial neural network including auto-encoder (AE) and auto-regression (AR) components. The AE was used for dimensionality reduction and denoising the data. The AR was used to describe the dynamics of an individual mouse’s health state by means of stochastic evolution of a single organism state variable, the “dynamic frailty index” (dFI), that is the linear combination of the latent AE features and has the meaning of the total number of regulatory abnormalities developed up to the point of the measurement or, more formally, the order parameter associated with the instability. We used neither the chronological age nor the remaining lifespan of the animals while training the model. Nevertheless, dFI fully described aging on the organism level, that is it increased exponentially with age and predicted remaining lifespan. Notably, dFI correlated strongly with multiple hallmarks of aging such as physiological frailty index, indications of physical decline, molecular markers of inflammation and accumulation of senescent cells. The dynamic nature of dFI was demonstrated in mice subjected to aging acceleration by placement on a high-fat diet and aging deceleration by treatment with rapamycin.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3