A hybrid optimal contribution approach to drive short-term gains while maintaining long-term sustainability in a modern plant breeding program

Author:

Santantonio NicholasORCID,Robbins Kelly

Abstract

1AbstractPlant breeding programs must adapt genomic selection to an already complex system. Inbred or hybrid plant breeding programs must make crosses, produce inbred individuals, and phenotype inbred lines or their hybrid test-crosses to select and validate superior material for product release. These products are few, and while it is clear that population improvement is necessary for continued genetic gain, it may not be sufficient to generate superior products. Rapid-cycle recurrent truncation genomic selection has been proposed to increase genetic gain by reducing generation time. This strategy has been shown to increase short-term gains, but can quickly lead to loss of genetic variance through inbreeding as relationships drive prediction. The optimal contribution of each individual can be determined to maximize gain in the following generation while limiting inbreeding. While optimal contribution strategies can maintain genetic variance in later generations, they suffer from a lack of short-term gains in doing so. We present a hybrid approach that branches out yearly to push the genetic value of potential varietal materials while maintaining genetic variance in the recurrent population, such that a breeding program can achieve short-term success without exhausting long-term potential. Because branching increases the genetic distance between the phenotyping pipeline and the recurrent population, this method requires sacrificing some trial plots to phenotype materials directly out of the recurrent population. We envision the phenotypic pipeline not only for selection and validation, but as an information generator to build predictive models and develop new products.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3