Utilization of a cell-penetrating peptide-adaptor for delivery of HPV protein E2 into cervical cancer cells to arrest cell growth and promote cell death

Author:

LeCher Julia C.,Didier Hope L.,Dickson Robert L.,Slaughter Lauren R.,Bejarano Juana C.,Ho Steven,Nowak Scott J.,Chrestensen Carol A.,McMurry Jonathan L.ORCID

Abstract

AbstractCervical cancer is the second leading cause of cancer deaths in women worldwide. Human papillomavirus (HPV) is the causative agent of nearly all forms of cervical cancer, which arises upon viral integration into the host genome and concurrent loss of regulatory gene E2. E2 protein regulates viral oncoproteins E6 and E7. Loss of E2 upon viral integration results in unregulated expression and activity of E6 and E7, which promotes carcinogenesis. Previous studies using gene-based delivery show that reintroduction of E2 into cervical cancer cell lines can reduce proliferative capacity and promote apoptosis. However, owing in part to limitations on transfectionin vivo, E2 reintroduction has yet to achieve therapeutic usefulness. A promising new approach is protein-based delivery systems utilizing cell-penetrating peptides (CPPs). CPPs readily traverse the plasma membrane and are able to carry with them biomolecular ‘cargos’ to which they are attached. Though more than two decades of research have been dedicated to their development for delivery of biomolecular therapeutics, the full potential of CPPs has yet to be realized as the field is hindered by the tendency of CPP-linked cargos to be trapped in endosomes as well as having significant off-target potentialin vivo. Using a CPP-adaptor system that reversibly binds cargo thereby overcoming the endosomal entrapment that hampers other CPP methods, bioactive E2 protein was delivered into living cervical cancer cells, resulting in inhibition of cellular proliferation and promotion of cell death in a time- and dose-dependent manner. The results suggest that this nucleic acid- and virus-free delivery method could be harnessed to develop novel, effective protein therapeutics for treatment of cervical cancer.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3