The RNA of maize chlorotic mottle virus - the essential virus in maize lethal necrosis disease - is translated via a panicum mosaic virus-like cap-independent translation element

Author:

Carino Elizabeth,Scheets Kay,Miller W. AllenORCID

Abstract

AbstractMaize chlorotic mottle virus (MCMV) combines with a potyvirus in maize lethal necrosis disease (MLND), an emerging disease worldwide that often causes catastrophic yield loss. To inform resistance strategies, we characterized the translation initiation mechanism of MCMV. We report that, like other tombusvirids, MCMV RNA contains a cap-independent translation element (CITE) in its 3’ untranslated region (UTR). The MCMV 3’ CITE (MTE) was mapped to nucleotides 4164-4333 in the genomic RNA. SHAPE probing revealed that the MTE is a variant of the panicum mosaic virus-like 3’ CITE (PTE). Like the PTE, electrophoretic mobility shift assays (EMSAs) indicated that eukaryotic translation initiation factor 4E (eIF4E) binds the MTE despite the absence of a m7GpppN cap structure, which is normally required for eIF4E to bind RNA. The MTE interaction with eIF4E suggests eIF4E may be a soft target for engineered resistance to MCMV. Using a luciferase reporter system, mutagenesis to disrupt and restore base pairing revealed that the MTE interacts with the 5’ UTRs of both genomic RNA and the 3’-coterminal subgenomic RNA1 via long-distance kissing stem-loop base pairing to facilitate translation in wheat germ extract and in protoplasts. However, the MTE is a relatively weak stimulator of translation and has a weak, if any, pseudoknot, which is present in the most active PTEs. Most mutations designed to form a pseudoknot decreased translation activity. Mutations in the viral genome that reduced or restored translation prevented and restored virus replication, respectively, in maize protoplasts and in plants. We propose that MCMV, and some other positive strand RNA viruses, favors a weak translation element to allow highly efficient viral RNA synthesis.Author SummaryIn recent years, maize lethal necrosis disease has caused massive crop losses in East Africa and Ecuador. It has also emerged in East Asia. Maize chlorotic mottle virus (MCMV) infection is required for this disease. While some tolerant maize lines have been identified, there are no known resistance genes that confer full immunity to MCMV. In order to design better resistance strategies against MCMV, we focused on how the MCMV genome is translated, the first step of gene expression required for infection by all positive strand RNA viruses. We identified a structure (cap-independent translation element) in the 3’ untranslated region of the viral RNA genome that allows the virus to usurp a host translation initiation factor in a way that differs from host mRNA interactions with the translational machinery. This difference may guide engineering of – or breeding for – resistance to MCMV. Moreover, this work adds to the diversity of known eukaryotic translation initiation mechanisms, as it provides more information on mRNA structural features that permit noncanonical interaction with a translation factor. Finally, owing to the conflict between ribosomes translating and viral replicase copying viral RNA, we propose that MCMV has evolved a relatively weak translation element in order to permit highly efficient RNA synthesis, and that this replication-translation trade-off may apply to other positive strand RNA viruses.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

1. Corn lethal necrosis - a new virus disease of corn in Kansas;Plant Disease Reporter,1978

2. FAO. Maize Lethal Necrosis Disease (MLND) - A snapshot La FAO en situaciones de emergencias 2013 [March]. Available from: http://www.fao.org/fileadmin/user_upload/emergencies/docs/MLND%20Snapshot_FINAL.pdf.

3. FAO. Status of Maize lethal necrosis disease (MLND)in kenya Food and Agriculture Organization of the United Nations2017. Available from: https://www.ippc.int/en/countries/kenya/pestreports/2017/11/status-of-maize-lethal-necrosis-disease-mlndin-kenya-1/.

4. First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis in Kenya

5. Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3