Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase

Author:

da Silva Marco Túlio Alves,e Silva Ivan RosaORCID,Faim Lívia Maria,Bellini Natalia Karla,Pereira Murilo Leão,Lima Ana Laura,de Jesus Teresa Cristina Leandro,Costa Fernanda Cristina,Watanabe Tatiana Faria,Pereira Humberto D’Muniz,Valentini Sandro Roberto,Zanelli Cleslei Fernando,Borges Julio Cesar,Bertacine Dias Marcio Vinicius,da Cunha Julia Pinheiro Chagas,Mittra Bidyottam,Andrews Norma W.,Thiemann Otavio HenriqueORCID

Abstract

AbstractEarly branching eukaryotes have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasite of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable complexes involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) and the tRNASec-specific elongation factor (eEFSec)-ribosome. Endoplasmic reticulum stress with ditiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Although selenoprotein T (SELENOT) was dispensable for both forms of the parasite, SELENOT-RNAi procyclic T. brucei cells were sensitive to DTT. Together, our data suggest a role for the T. brucei selenophosphate synthetase in regulation of the parasite’s ER stress response.SynopsisSelenium is both a toxic compound and a micronutrient. As a micronutrient, it participates in the synthesis of specific proteins, selenoproteins, as the amino acid selenocysteine. The synthesis of selenocysteine is present in organisms ranging from bacteria to humans. The protozoa parasites of the Trypanosomatidae family, that cause major tropical diseases, conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins. However, this pathway has been considered dispensable for the protozoa cells. This has intrigued us, and lead to question that if maintained in the cell it should be under selective pressure and therefore be necessary. Also, since the intermediate products of selenocysteine synthesis are toxic to the cell, it has been proposed that these compounds need to be sequestered from the cytoplasm. Therefore, extensive and dynamic protein-protein interactions must happen to deliver those intermediates along the pathway. In this study we have investigated the molecular and structural interactions of different proteins involved in selenocystein synthesis and describe its involvement in the endoplasmic reticulum protection to oxidative stress. Our results also show how the interaction of different proteins leads to the protection of the cell against the toxic effects of seleium compounds during selenocysteine synthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3