Linked-read sequencing enables haplotype-resolved resequencing at population scale

Author:

Lutgen DaveORCID,Ritter Raphael,Olsen Remi-André,Schielzeth HolgerORCID,Gruselius Joel,Ewels PhilORCID,García Jesús T.,Shirihai Hadoram,Schweizer Manuel,Suh AlexanderORCID,Burri RetoORCID

Abstract

AbstractThe feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and the inference of selective sweeps – are still limited by the lack of high-quality haplotype information. In this respect, the newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genusOenantheacross a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50 and 90 percent of the phased sequence located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90), respectively. Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1Mb (N50/N90) at 25x coverage), but only marginally improved phasing accuracy. Finally, phasing contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing data at population scale.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3