Lineage Functional Types (LFTs): Characterizing functional diversity to enhance the representation of ecological behavior in Earth System Models

Author:

Griffith Daniel M.ORCID,Osborne Colin,Edwards Erika J.,Bachle Seton,Beerling David J.,Bond William J.,Gallaher Timothy,Helliker Brent R.,Lehmann Caroline E.R.,Leatherman Lila,Nippert Jesse B.,Pau Stephanie,Qiu Fan,Riley William J.,Smith Melinda D.,Strömberg Caroline,Taylor Lyla,Ungerer Mark,Still Christopher J.

Abstract

SummaryProcess-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics, but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass dominated ecosystems are broadly distributed across all vegetated continents and harbor large functional diversity, yet most Earth System Models (ESMs) summarize grasses into two generic PFTs based primarily on differences between temperate C3grasses and (sub)tropical C4grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in ESMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve ESM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3