Human stem cell derived sensory neurons are positioned to support varicella zoster virus latency

Author:

Sadaoka TomohikoORCID,Rajbhandari Labchan,Shukla Priya,Jagdish Balaji,Lee Hojae,Lee Gabsang,Venkatesan Arun

Abstract

ABSTRACTThe neuropathogenesis of varicella-zoster virus (VZV) has been challenging to study due to the strict human tropism of the virus and the resultant difficulties in establishing tractable experimental models. In vivo, sensory neurons of the dorsal root ganglia and trigeminal ganglia serve as cellular niches that support viral latency, and VZV can subsequently reactivate from these cells to cause disease. Whether sensory neurons possess intrinsic properties that position them to serve as a reservoir of viral latency remains unknown. Here, we utilize a robust human sensory neuron system to investigate lytic infection and viral latency. We find that sensory neurons exhibit resistance to lytic infection by VZV. On the other hand, latent infection in sensory neurons is associated with an episomal-like configuration of viral DNA and expression of the VZV latency-associated transcript (VLT), thus closely mirroring the in vivo state. Moreover, despite the relative restriction in lytic infection, we demonstrate that viral reactivation is possible from latently infected sensory neurons. Taken together, our data suggest that human sensory neurons possess intrinsic properties that serve to facilitate their role as a latent reservoir of VZV.IMPORTANCEVaricella-zoster virus (VZV) has infected over 90% of people worldwide. Following primary infection, the virus can remain dormant in the nervous system and may reactivate later in life, with potentially severe consequences. Here, we develop a model of VZV infection in human sensory neurons in order to determine whether these cells are intrinsically positioned to support latency and reactivation. We find that human sensory neurons are relatively resistant to lytic infection, but can support latency and reactivation. Moreover, during in vitro latency human sensory neurons, but not other neurons, express the newly discovered VZV latency-associated transcript (VLT), thus closely mirroring the in vivo latent state. Taken together, these data indicate that human sensory neurons are uniquely positioned to support latency. We anticipate that this human sensory neuron model will serve to facilitate further understanding of the mechanisms of VZV latency and reactivation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3