Abstract
AbstractA hallmark of human cancer is global DNA hypomethylation (GDHO), but the mechanisms accounting for this defect and its pathological consequences have not been defined in human epithelial ovarian cancer (EOC). In EOC, GDHO was associated with advanced disease and reduced overall and disease-free survival. GDHO(+) EOC was enriched for a proliferative gene expression signature, including CCNE1 and FOXM1 overexpression. DNA hypomethylation preferentially occurred within genomic blocks (hypomethylated blocks) overlapping late-replicating, lamina-associated domains, PRC2 binding, and H3K27me3. Increased proliferation coupled with hypomethylated block formation at late replicating regions suggested passive hypomethylation, which was further supported by the observation that cytosine DNA methyltransferases (DNMTs) and UHRF1 showed significantly reduced expression in GDHO(+) EOC, after normalization to proliferation markers. Importantly, GDHO(+) EOC showed elevated chromosomal instability (CIN), and copy number alterations (CNA) were enriched at hypomethylated blocks. Together, these findings implicate a passive demethylation mechanism for GDHO that promotes genomic instability and poor prognosis in EOC.
Publisher
Cold Spring Harbor Laboratory
Reference83 articles.
1. The Epigenomics of Cancer
2. The history of cancer epigenetics
3. Epigenetic stem cell signature in cancer
4. Reduced genomic 5-methylcytosine content in human colonic neoplasia;Cancer research,1988
5. Hypomethylation of DNA in pathological conditions of the human prostate;Cancer research,1987
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献