Abstract
AbstractThe ordered environment of membrane rafts is thought to exclude many transmembrane proteins. Nevertheless, some multi-pass transmembrane proteins have been proposed to partition into ordered domains. Here, giant plasma membrane vesicles (GPMVs) were employed to quantitatively show that the tetraspan peripheral myelin protein 22 (PMP22) exhibits a pronounced preference for, promotes the formation of, and stabilizes ordered membrane domains. Neither S-palmitoylation of PMP22 nor its putative cholesterol binding motifs are required for partitioning to ordered domains. In contrast, disruption of its unusual first transmembrane helix (TM1) reduced ordered phase preference. Charcot-Marie-Tooth disease-causing mutations that destabilize PMP22 also reduced or eliminated this preference in favor of the disordered phase. These studies demonstrate PMP22’s ordered phase preference derives both from the distinctive properties of TM1 and global structural features associated with its transmembrane domain, providing a first glimpse at the structural factors that promote raft partitioning for multi-pass proteins.Significance StatementThe preferential partitioning of single span membrane proteins for the ordered phase of ordered/disordered phase-separated membranes is now reasonably well understood, but little is known about this phase preferences of multi-pass membrane proteins. Here, it is shown that the disease-linked tetraspan integral membrane protein, PMP22, displays a pronounced preference to partition into the ordered phase, a preference that is reversed by disease mutations. This phase preference may be related to the role of PMP22 in cholesterol homeostasis in myelinating Schwann cells, a role that is also known to be disrupted under conditions of CMTD peripheral neuropathy caused by pmp22 mutations.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献