Deciphering the Signaling Network Landscape of Breast Cancer Improves Drug Sensitivity Prediction

Author:

Tognetti MarcoORCID,Gabor Attila,Yang MiORCID,Cappelletti Valentina,Windhager JonasORCID,Charmpi Konstantina,de Souza Natalie,Beyer AndreasORCID,Picotti PaolaORCID,Saez-Rodriguez JulioORCID,Bodenmiller Bernd

Abstract

ABSTRACTAlthough genetic and epigenetic abnormalities in breast cancer have been extensively studied, it remains difficult to identify those patients who will respond to particular therapies. This is due in part to our lack of understanding of how the variability of cellular signaling affects drug sensitivity. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF in the presence or absence of five kinase inhibitors. These data – on more than 80 million single cells from 4,000 conditions – were used to fit mechanistic signaling network models that provide unprecedented insights into the biological principles of how cancer cells process information. Our dynamic single-cell-based models more accurately predicted drug sensitivity than static bulk measurements for drugs targeting the PI3K-MTOR signaling pathway. Finally, we identified genomic features associated with drug sensitivity by using signaling phenotypes as proxies, including a missense mutation in DDIT3 predictive of PI3K-inhibition sensitivity. This provides proof of principle that single-cell measurements and modeling could inform matching of patients with appropriate treatments in the future.One-linerSingle-cell proteomics coupled to perturbations improves accuracy of breast tumor drug sensitivity predictions and reveals mechanisms of sensitivity and resistance.HIGHLIGHTSMass cytometry study of signaling responses of 62 breast cancer cell lines and five lines from healthy tissue to EGF stimulation with or without perturbation with five kinase inhibitors.Single-cell signaling features and mechanistic signaling network models predicted drug sensitivity.Mechanistic signaling network models deepen the understanding of drug resistance and sensitivity mechanisms.We identify drug sensitivity-predictive genomic features via proxy signaling phenotypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3