Abstract
AbstractAnthracnose disease is caused by the ascomycetes fungal species Colletotrichum, which is responsible for heavy yield losses in chilli and tomato worldwide. Conventionally, harmful pesticides are used to contain anthracnose disease with limited success. In this study, we assessed the potential of Host-Induced Gene Silencing (HIGS) approach to target the Colletotrichum gloeosporioides COM1 (CgCOM1) developmental gene involved in the fungal conidial and appressorium formation, to restrict fungal infection in chilli and tomato fruits. For this study, we have developed stable transgenic lines of chilli and tomato expressing CgCOM1-RNAi construct employing Agrobacterium-mediated transformation. Transgenic plants were characterized by molecular and gene expression analyses. Production of specific CgCOM1 siRNA in transgenic chilli and tomato RNAi lines was confirmed by stem-loop RT-PCR. Fungal challenge assays on leaves and fruits showed that the transgenic lines were resistant to anthracnose disease-causing C. gloeosporioides in comparison to wild type and empty-vector control plants. RT-qPCR analyses in transgenic lines revealed barely any CgCOM1 transcripts in the C. gloeosporioides infected tissues, indicating near complete silencing of CgCOM1 gene expression in the pathogen. Microscopic examination of the Cg-challenged leaves of chilli-CgCOM1i lines revealed highly suppressed conidial germination, germ tube development, appressoria formation and mycelial growth of C. gloeosporioides, resulting in reduced infection of plant tissues. These results demonstrated highly efficient use of HIGS in silencing the expression of essential fungal developmental genes to inhibit the growth of pathogenic fungi, thus providing a highly precise approach to arrest the spread of disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献