25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner

Author:

Wong Man Ying,Lewis Michael,Doherty James J.,Shi Yang,Sullivan Patrick M.,Qian Mingxing,Covey Douglas F.,Petsko Gregory A.,Holtzman David M.,Paul Steven M.,Luo WenjieORCID

Abstract

AbstractGenome-wide association studies associated with Alzheimer’s disease (AD) have implicated pathways related to both lipid homeostasis and innate immunity in the pathophysiology of AD. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Genetic variants of the enzyme responsible for 25-HC production, cholesterol 25-hydroxylase (CH25H), have been found to be associated with AD. In the present study, we found that the CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue bearing amyloid-β (Aβ) plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brainin vivo. LPS also stimulates CH25H expression and 25-HC secretion in cultured mouse primary microglia. We also found that LPS-induced microglial production of the pro-inflammatory cytokine IL1β is markedly potentiated by 25-HC and attenuated by genetic deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, treatment of microglia with 25-HC results in a much greater level of IL1β secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL1β release in apoE4-expressing microglia, indicating the involvement of caspase-1/NLRP3 inflammasome activity. 25-HC may function as a microglial secreted inflammatory mediator in brain, promoting IL1β-mediated neuroinflammation in an apoE isoform-dependent manner (E4≫E2/E3) and thus may be an important mediator of neuroinflammation in AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3