Algorithmic Learning for Auto-deconvolution of GC-MS Data to Enable Molecular Networking within GNPS

Author:

Aksenov Alexander A.ORCID,Laponogov Ivan,Zhang Zheng,Doran Sophie LF,Belluomo Ilaria,Veselkov Dennis,Bittremieux Wout,Nothias Louis Felix,Nothias-Esposito Mélissa,Maloney Katherine N.,Misra Biswapriya B.,Melnik Alexey V.,Jones Kenneth L.,Dorrestein Kathleen,Panitchpakdi Morgan,Ernst Madeleine,van der Hooft Justin J.J.ORCID,Gonzalez Mabel,Carazzone Chiara,Amézquita Adolfo,Callewaert Chris,Morton James,Quinn Robert,Bouslimani Amina,Albarracín Orio Andrea,Petras Daniel,Smania Andrea M.,Couvillion Sneha P.,Burnet Meagan C.,Nicora Carrie D.,Zink Erika,Metz Thomas O.,Artaev Viatcheslav,Humston-Fulmer Elizabeth,Gregor Rachel,Meijler Michael M.,Mizrahi Itzhak,Eyal Stav,Anderson Brooke,Dutton Rachel,Lugan Raphaël,Boulch Pauline Le,Guitton Yann,Prevost Stephanie,Poirier Audrey,Dervilly Gaud,Bizec Bruno Le,Fait Aaron,Persi Noga Sikron,Song Chao,Gashu Kelem,Coras Roxana,Guma Monica,Manasson Julia,Scher Jose U.,Barupal Dinesh,Alseekh Saleh,Fernie Alisdair,Mirnezami Reza,Vasiliou Vasilis,Schmid Robin,Borisov Roman S.,Kulikova Larisa N.,Knight RobORCID,Wang Mingxun,Hanna George B,Dorrestein Pieter C.,Veselkov Kirill

Abstract

AbstractGas chromatography-mass spectrometry (GC-MS) represents an analytical technique with significant practical societal impact. Spectral deconvolution is an essential step for interpreting GC-MS data. No public GC-MS repositories that also enable repository-scale analysis exist, in part because deconvolution requires significant user input. We therefore engineered a scalable machine learning workflow for the Global Natural Product Social Molecular Networking (GNPS) analysis platform to enable the mass spectrometry community to store, process, share, annotate, compare, and perform molecular networking of GC-MS data. The workflow performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization, using a Fast Fourier Transform-based strategy to overcome scalability limitations. We introduce a “balance score” that quantifies the reproducibility of fragmentation patterns across all samples. We demonstrate the utility of the platform with breathomics analysis applied to the early detection of oesophago-gastric cancer, and by creating the first molecular spatial map of the human volatilome.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3