Machine learning reveals heterogeneous responses to FAK, Rac, Rho, and Cdc42 inhibition on vascular smooth muscle cell spheroid formation and morphology

Author:

Vaidyanathan Kalyanaraman,Wang Chuangqi,Krajnik Amanda,Yu Yudong,Choi Moses,Lin Bolun,Heo Su-Jin,Kolega John,Lee KwonmooORCID,Bae YonghoORCID

Abstract

SUMMARYAtherosclerosis and vascular injury are characterized by neointima formation caused by the aberrant accumulation and proliferation of vascular smooth muscle cells (VSMCs) within the vessel wall. Understanding how to control VSMCs would advance the effort to treat vascular disease. However, the response to treatments aimed at VSMCs is often different among patients with the same disease condition, suggesting patient-specific heterogeneity in VSMCs. Here, we present an experimental and computational method called HETEROID (Heterogeneous Spheroid), which examines the heterogeneity of the responses to drug treatments at the single-spheroid level by combining a VSMC spheroid model and machine learning (ML) analysis. First, we established a VSMC spheroid model that mimics neointima formation induced by atherosclerosis and vascular injury. We found that FAK-Rac/Rho, but not Cdc42, pathways regulate the VSMC spheroid formation through N-cadherin. Then, to identify the morphological subpopulations of drug-perturbed spheroids, we used an ML framework that combines deep learning-based spheroid segmentation and morphological clustering analysis. Our ML approach reveals that FAK, Rac, Rho, and Cdc42 inhibitors differentially affect the spheroid morphology, suggesting there exist multiple distinct pathways governing VSMC spheroid formation. Overall, our HETEROID pipeline enables detailed quantitative characterization of morphological changes in neointima formation, that occurs in vivo, by single-spheroid analysis of various drug treatments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Progress in in vitro Models for Atherosclerosis Studies;Frontiers in Cardiovascular Medicine;2022-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3