Low-cost microphysiological systems: Feasibility study of a tape-based barrier-on-chip system for small intestine modeling

Author:

Winkler Thomas E.ORCID,Feil Michael,Stronkman Eva F.G.J.,Matthiesen IsabelleORCID,Herland AnnaORCID

Abstract

AbstractWe see affordability as a key challenge in making organs-on-chips accessible to a wider range of users, particularly outside the highest-resource environments. Here, we present an approach to barrier-on-a-chip fabrication based on double-sided pressure-sensitive adhesive tape and off-the-shelf polycarbonate. Besides a low materials cost, common also to PDMS or thermoplastics, it requires minimal (€ 100) investment in laboratory equipment, yet at the same time is suitable for upscaling to industrial roll-to-roll manufacture. We evaluate our microhpysiological system with an epithelial (C2BBe1) barrier model of the small intestine, studying the biological effects of permeable support pore size, as well as stimulation with a common food compound (chili pepper-derived capsaicinoids). The cells form tight and continuous barrier layers inside our systems, with comparable permeability but superior epithelial polarization compared to Transwell culture, in line with other perfused microphysiological models. Permeable support pore size is shown to weakly impact barrier layer integrity as well as the metabolic cell profile. Capsaicinoid response proves distinct between culture systems, but we show that impacted metabolic pathways are partly conserved, and that cytoskeletal changes align with previous studies. Overall, our tape-based microphysiolgical system proves to be a robust and reproducible approach to studying physiological barriers, in spite of its low cost.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. Microfluidic organs-on-chips

2. Clarivate Analytics, “Web of Science,” can be found under https://apps.webofknowledge.com/, n.d.

3. Organisation for Economic Co-operation and Development, “OECD Data,” can be found under https://data.oecd.org/, n.d.

4. Advances in organ-on-a-chip engineering

5. Microfluidic organ-on-chip technology for blood-brain barrier research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3