Early metazoan origin and multiple losses of a novel clade of RIM pre-synaptic calcium channel scaffolding protein homologues

Author:

Piekut Thomas,Wong Yuen Yan,Walker Sarah E.,Smith Carolyn L.,Gauberg Julia,Harracksingh Alicia N.,Lowden Christopher,Mary Cheng Hai-Ying,Spencer Gaynor E.,Senatore Adriano

Abstract

AbstractThe precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which,Rab3 interactingmolecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channelsin vitrovia a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing homologous domain architectures as known RIM homologues, but some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoanTrichoplax adhaerens, and molluscs. RNA expression and localization studies inTrichoplaxand the mollusc snailLymnaea stagnalisindicate differential regional/tissue type expression, but overlapping expression in single isolated neurons fromLymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homologue. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOHlike PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3