A Precision Medicine Framework for Personalized Simulation of Hemodynamics in Cerebrovascular Disease

Author:

Frey DietmarORCID,Livne MichelleORCID,Leppin Heiko,Akay Ela M,Aydin Orhun U,Behland Jonas,Sobesky Jan,Vajkoczy PeterORCID,Madai Vince IORCID

Abstract

AbstractIntroductionCerebrovascular disease is a major public health challenge. An important biomarker is cerebral hemodynamics. To measure cerebral hemodynamics, however, only invasive, potentially harmful or time-to-treatment prolonging methods are available. We present a simulation-based alternative which allows calculation of cerebral hemodynamics based on the individual vessel con figuration of a patient derived from structural vessel imaging.MethodsWe implemented a framework allowing annotation of extracted brain vessels from structural imaging followed by 0-dimensional lumped modelling of cerebral hemodynamics. For annotation, a 3D-graphical user interface (GUI) was implemented. For 0D-simulation, we used a modified nodal analysis (MNA), which was adapted for easy implementation by code. The code was written in-house in java. The simulation GUI allows inspection of simulation results, identification of vulnerable areas, simulation of changes due to different systemic blood pressures. Moreover, sensitivity analysis was implemented allowing the live simulation of changes of variables such as vessel lumen to simulate procedures and disease courses. In two exemplary patients, simulation results were compared to dynamic-susceptibility-weighted-contrast-enhanced magnetic- resonance(DSC-MR) perfusion imaging.ResultsThe successful implementation of the framework allowing individualized annotation and simulation of patients is presented. In two exemplary patients, both the simulation as well as DSC- MRI showed the same results pertaining to the identification of areas vulnerable to ischemia. Sensitivity analysis allows the individualized simulation of changes in vessel lumen and the effect on hemodynamics.DiscussionWe present the first precision medicine pipeline for cerebrovascular disease which allows annotation of the arterial vasculature derived from structural vessel imaging followed by personalized simulation of brain hemodynamics. This paves the way for further development of precision medicine in stroke using novel biomarkers and might make the application of harmful and complex perfusion methods obsolete for certain use cases in the future.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3