An individualized risk prediction model for new-onset, progression and regression of chronic kidney disease in a retrospective cohort of patients with type 2 diabetes under primary care in Hong Kong

Author:

Yang LinORCID,Chu Tsun Kit,Lian Jinxiao,Lo Cheuk Wai,Zhao Shi,He Daihai,Qin Jing,Liang Jun

Abstract

AbstractObjectivesThis study is aimed to develop and validate a prediction model for multi-state transitions across different stages of chronic kidney disease in patients with type 2 diabetes mellitus under primary care.SettingWe retrieved the anonymized electronic health records of a population based retrospective cohort in Hong Kong.ParticipantsA total of 26,197 patients were included in the analysis.Primary and secondary outcome measuresThe new-onset, progression, and regression of chronic kidney disease were defined by the transitions of four stages that were classified by combining glomerular filtration rate and urine albumin-to-creatinine ratio. We applied a multi-scale multi-state Poisson regression model to estimate the rates of the stage transitions by integrating the baseline demographic characteristics, routine laboratory test results and clinical data from electronic health records.ResultsDuring the mean follow-up time of 1.7 years, there were 2,935 patients newly diagnosed with chronic kidney disease, 1,443 progressed to the next stage and 1,971 regressed into an earlier stage. The models achieved the best performance in predicting the new-onset and progression with the predictors of sex, age, body mass index, systolic blood pressure, diastolic blood pressure, serum creatinine, HbA1c, total cholesterol, LDL, HDL, triglycerides and drug prescriptions.ConclusionsThis study demonstrated that individual risks of new-onset and progression of chronic kidney disease can be predicted from the routine physical and laboratory test results. The individualized prediction curves developed from this study could potentially be applied to routine clinical practices, to facilitate clinical decision making, risk communications with patients and early interventions.Article summaryStrengths of this studyEarly predictions for chronic kidney disease progression and timely intervention is critical for clinical management of patients with diabetes.We successfully developed a multi-scale multi-state Poisson regression models that achieved the satisfactory performance in predicting the new-onset and progression of chronic kidney diseases.The model incorporates the predictors of demographic characteristics, routine laboratory test results and clinical data from electronic health records.The individualized prediction curves could potentially be applied to facilitate clinical decision making, risk communications with patients and early interventions of CKD progression.Limitations of this studyThe cohort has a relatively short follow-up period and the retrospective study design might suffer from report bias and selection bias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3