Highly Multiplexed Single-Cell Full-Length cDNA Sequencing of human immune cells with 10X Genomics and R2C2

Author:

Volden RogerORCID,Vollmers ChristopherORCID

Abstract

AbstractSingle cell transcriptome analysis elucidates facets of cell biology that have been previously out of reach. However, the high-throughput analysis of thousands of single cell transcriptomes has been limited by sample preparation and sequencing technology. High-throughput single cell analysis today is facilitated by protocols like the 10X Genomics platform or Drop-Seq which generate cDNA pools in which the origin of a transcript is encoded at its 5’ or 3’ end. These cDNA pools are most often analyzed by short read Illumina sequencing which can identify the cellular origin of a transcript and what gene it was transcribed from. However, these methods fail to retrieve isoform information. In principle, cDNA pools prepared using these approaches can be analyzed with Pacific Biosciences and Oxford Nanopore long-read sequencers to retrieve isoform information but current implementations rely heavily on Illumina short-reads for analysis in addition to long reads. Here, we used R2C2 to sequence and demultiplex 12 million full-length cDNA molecules generated by the 10X Chromium platform from ∼3000 peripheral blood mononuclear cells (PBMCs). We used these reads to – independent from Illumina data – cluster cells into B cells, T cells, and Monocytes and generate isoform-level transcriptomes for these cell types. We also generated isoform-level transcriptomes for all single cells and used this information to identify a wide range of isoform diversity between genes. Finally, we also designed a computational workflow to extract paired adaptive immune receptors – T cell receptor and B cell receptor (TCR and BCR) – sequences unique to each T and B cell. This work represents a new, simple, and powerful approach that – using a single sequencing method – can extract an unprecedented amount of information from thousands of single cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3