Hesperetin inhibits foam cell formation in macrophages via activating LXRα signal in an AMPK dependent manner

Author:

Chen XuanjingORCID,Zou Dezhi,Chen Xiaoling,Wu Huanlin,Xu Danping

Abstract

AbstractCholesterol efflux from macrophages is the first step of cholesterol reverse transport (RCT), whose increase inhibits cholesterol accumulation and foam cell formation to suppress atherogenesis. Liver X receptor alpha (LXRα) and adenosine monophosphate activated protein kinases (AMPK) both have the pivotal role in cholesterol homeostasis. However the association between these two molecules in cell model of atherosclerosis is poorly understood. Hesperetin has been reported to possess several protective effects for cardiovascular diseases, while little is known about the role of hesperetin and its underlying mechanism on macrophage foam cell formation. In this study, we sought to investigate the potential effects of hesperetin in cholesterol efflux by using human macrophage derived foam cells, focusing on liver X receptor alpha (LXRα) and adenosine monophosphate activated protein kinases (AMPK) implication. Hesperetin treatment concentration-dependently reduced foam cell formation, intracellular cholesterol level and cholesterol esterification rate, and enhanced cholesterol efflux in THP-1 macrophages. Hesperetin upregulated the protein levels of LXRα and its targets including ABCA1, ABCG1 as well as SR-BI, and phosphorylated-AMPK. Meanwhile, hesperetin-induced upregulation of LXRα expression was enhanced by AMPK agonist and inhibited by AMPK inhibitor. Furthermore, hesperetin increased mRNA level of LXRα and its target genes, all which were depressed by AMPKα1/α2 small interfering RNA (siRNA) transfection. In conclusion, we founded for the first time that hesperetin could active AMPK. And this activation upregulated LXRα and its targets including ABCA1, ABCG1 and SR-BI, which significantly inhibited foam cell formation and promoted cholesterol efflux in THP-1 macrophages. Our results highlight the therapeutic potential of hespretin for the possible reduction in foam cell formation. This new mechanism could contribute the anti-atherogenic effects of hesperetin.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3