Protein Corona Composition and Dynamics on Carbon Nanotubes in Blood Plasma and Cerebrospinal Fluid

Author:

Pinals Rebecca L.ORCID,Yang DarwinORCID,Rosenberg Daniel J.,Chaudhary Tanya,Crothers Andrew R.ORCID,Iavarone Anthony T.,Hammel MichalORCID,Landry Markita P.ORCID

Abstract

AbstractWhen a nanoparticle enters a biological environment, the surface is rapidly coated with proteins to form a “protein corona”. Presence of the protein corona surrounding the nanoparticle has significant implications for applying nanotechnologies within biological systems, affecting outcomes such as biodistribution and toxicity. Herein, we measure protein corona formation on single-stranded DNA wrapped single-walled carbon nanotubes (ssDNA-SWCNTs), a high-aspect ratio nanoparticle ideal for sensing and delivery applications, and polystyrene nanoparticles, a model nanoparticle system. The protein corona of each nanoparticle is studied in human blood plasma and cerebrospinal fluid. We characterize corona composition by proteomic mass spectrometry to determine abundant and differentially enriched vs. depleted corona proteins. High-binding corona proteins on ssDNA-SWCNTs include proteins involved in lipid binding and transport (clusterin and apolipoprotein A-I), complement activation (complement C3), and blood coagulation (fibrinogen). Of note, albumin is the most common blood protein (55% w/v), yet exhibits low-binding affinity towards ssDNA-SWCNTs, displaying 1300-fold lower bound concentration relative to native plasma. We investigate the role of electrostatic and entropic interactions driving selective protein corona formation, and find that hydrophobic interactions drive inner corona formation, while shielding of electrostatic interactions allows for outer corona formation. Lastly, we study real-time binding of proteins on ssDNA-SWCNTs and find relative agreement between proteins that are enriched and bind strongly, such as fibrinogen, and proteins that are depleted and bind marginally, such as albumin. Interestingly, certain proteins express contrary behavior in single-protein experiments than within the whole biofluid, highlighting the importance of cooperative mechanisms driving selective corona adsorption on the SWCNT surface. Knowledge of the protein corona composition, dynamics, and structure informs translation of engineered nanoparticles fromin vitrodesign to effectivein vivoapplication.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3