DNA damage and macrophage infiltration in the ovaries of the long-lived GH deficient Ames Dwarf and the short-lived bGH transgenic mice

Author:

Saccon Tatiana,Rovani Monique Tomazele,Garcia Driele Neske,Pradiee Jorgea,Mondadori Rafael Gianella,Cruz Luis Augusto Xavier,Barros Carlos Castilho,Fang Yimin,McFadden Samuel,Bartke Andrzej,Masternak Michal M,Schneider Augusto

Abstract

AbstractObjectiveThe aim of the study was to evaluate the role of growth hormone (GH) in DNA damage, macrophage infiltration and the granulosa cells number of primordial and primary follicles.MethodsFor these experiments six groups of female mice were used. Four groups consisted of Ames dwarf (Prop-1df, df/df, n=12) and their normal littermates (N/df, n=12) mice, between sixteen and eighteen month-old, receiving GH (n=6 for df/df, and n=6 for N/df mice) or saline injections (n=6 for df/df, and n=6 for N/df mice). The other two groups consisted of ten to twelve-month-old bGH (n=6) and normal mice (N, n=6). Immunofluorescence for DNA damage (anti-γH2AX) and macrophage counting (anti-CD68) were performed. Granulosa cells of primordial and primary follicles were counted.ResultsFemale df/df mice had lower γH2AX foci intensity in in both oocytes and granulosa cells of primordial and primary follicles (p<0.05), indicating less DNA double strand breaks (DSBs). In addition, GH treatment increased DSBs in both df/df and N/df mice. Inversely, bGH mice had higher quantity of DSBs in both oocytes and granulosa cells of primordial and primary follicles (p<0.05). Df/df mice showed ovarian tissue with less macrophage infiltration than N/df mice (p<0.05) and GH treatment increased macrophage infiltration (p<0.05). On the other hand, bGH mice had ovarian tissue with more macrophage infiltration compared to normal mice (p<0.05). Df/df mice had less granulosa cells on primordial and primary follicles than N/df mice (p<0.05). GH treatment did not affect the granulosa cells number (p>0.05). However, bGH mice had an increased number of granulosa cells on primordial and primary follicles compared to normal mice (p<0.05).ConclusionThe current study points to the role of the GH/IGF-I axis in maintenance of oocyte DNA integrity and macrophage ovarian infiltration in mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3