Abstract
AbstractMotivationProtein sequence evolution is a complex process that varies among-sites within proteins and across the tree of life. Comparisons of evolutionary rate matrices for specific taxa (‘clade-specific models’) have the potential to reveal this variation and provide information about the underlying reasons for those changes. To study changes in patterns of protein sequence evolution we estimated and compared clade-specific models in a way that acknowledged variation within proteins due to structure.ResultsClade-specific model fit was able to correctly classify proteins from four specific groups (vertebrates, plants, oomycetes, and yeasts) more than 70% of the time. This was true whether we used mixture models that incorporate relative solvent accessibility or simple models that treat sites as homogeneous. Thus, protein evolution is non-homogeneous over the tree of life. However, a small number of dimensions could explain the differences among models (for mixture models ~50% of the variance reflected relative solvent accessibility and ~25% reflected clade). Relaxed purifying selection in taxa with lower long-term effective population sizes appears to explain much of the among clade variance. Relaxed selection on solvent-exposed sites was correlated with changes in amino acid side-chain volume; other differences among models were more complex. Beyond the information they reveal about protein evolution, our clade-specific models also represent tools for phylogenomic inference.AvailabilityModel files are available from https://github.com/ebraun68/clade_specific_prot_models.Contactebraun68@ufl.eduSupplementary informationSupplementary data are appended to this preprint.
Publisher
Cold Spring Harbor Laboratory