Mg2+ modulates the activity of hyperpolarization-activated calcium currents in plant cells

Author:

Lemtiri-Chlieh FouadORCID,Arold Stefan T.ORCID,Gehring ChrisORCID

Abstract

ABSTRACTHyperpolarization-activated calcium channels (HACCs) are found in the plasma membrane and tonoplast of many plant cell types where they have an important role in Ca2+-dependent signaling. The unusual gating properties of HACCs in plants, i.e., activation by membrane hyperpolarization rather than depolarization, dictates that HACCs are normally open at physiological hyperpolarized resting membrane potentials (the so called pump or P-state), thus, if not regulated, they would be continuously leaking Ca2+ into cells. In guard cells, HACCs are permeable to Ca2+, Ba2+ and Mg2+, activated by H2O2 and the plant hormone abscisic acid (ABA) and their activity is greatly reduced by low amounts of free cytosolic Ca2+ ([Ca2+]Cyt) and hence will close during [Ca2+]Cyt surges. Here we demonstrate that the presence of the commonly used Mg-ATP inside the cell greatly reduces HACC activity especially at voltages ≤ −200 mV and that Mg2+ causes this block. We therefore conclude, firstly, that physiological cytosolic Mg2+ levels affect HACCs gating and that channel opening requires either high negative voltages (≥ −200 mV) and/or displacement of Mg2+ away from the immediate vicinity of the channel. Secondly, based on structural comparisons with Mg2+-sensitive animal inward-rectifying K+ channel, we propose that the likely candidate HACCS described here are cyclic nucleotide gated channels (CNGCs), many of which also contain a conserved di-acidic Mg2+-binding motif within their pores. This conclusion is consistent with the electrophysiological data. Finally, we propose that Mg2+, much like in animal cells, is an important component in Ca2+ signalling and homeostasis in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3