Abstract
AbstractMonkeypox is a zoonotic disease caused by monkeypox virus with noteworthy mortality and morbidity. Several recent outbreaks and the need of dependable reconnaissance have raised the level of concern for this developing zoonosis. In the present study, a reverse vaccinology strategy was developed to construct a peptide vaccine against monkeypox virus by exploring cell surface binding protein, Poxin-Schlafen andenvelope protein. Both humoral and cell mediated immunity induction were the main concerned properties for the designed peptide vaccine. Therefore, both T cell and B cell immunity against monkeypox virus were analyzed from the conserver region of the selected protein. Antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach were used to create the superior epitopes of moneypox virus. The subunit vaccine was constructed using highly immunogenic epitopes with appropriate adjuvant and linkers. Molecular docking examination of the refined vaccine with various MHCs and human immune receptor illustrated higher binding interaction. The designed construct was reverse transcribed and adjusted forE. colistrain K12 earlier to inclusion inside pET28a(+) vector for its heterologous cloning and expression. The study could start in vitro and in vivo studies concerning effective vaccine development against monkeypox virus.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献