Finding hotspots: development of an adaptive spatial sampling approach

Author:

Andrade-Pacheco Ricardo,Rerolle FrancoisORCID,Lemoine Jean,Hernandez Leda,Aboulaye Meïté,Juziwelo Lazarus,Bibaut Aurelien,van der Laan MarkORCID,Arnold BenjaminORCID,Sturrock HughORCID

Abstract

AbstractThe identification of disease hotspots is an increasingly important public health problem. While geospatial modeling offers an opportunity to predict the locations of hotspots using suitable environmental and climatological data, little attention has been paid to optimizing the design of surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to identify hotspot locations where prevalence exceeds a relevant threshold. Our approach incorporates ideas from Bayesian optimization theory to adaptively select sample batches. We present an experimental simulation study based on survey data of schistosomiasis and lymphatic filariasis across four countries. Results across all scenarios explored show that adaptive sampling produces superior results and suggest that similar performance to random sampling can be achieved with a fraction of the sample size.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. World Health Organization. Preventive chemotherapy in human helminthiasis. Coordinated use of anthelmintihic drugs in control interventions: a manual for health professionals and programme managers. Geneva: WHO Press; 2006.

2. Reassessment of areas with persistent Lymphatic Filariasis nine years after cessation of mass drug administration in Sri Lanka;PLoS neglected tropical diseases,2017

3. Planning schistosomiasis control: investigation of alternative sampling strategies for Schistosoma mansoni to target mass drug administration of praziquantel in East Africa

4. Evaluation of an improved approach using residences of schistosomiasis-positive school children to identify carriers in an area of low endemicity;The American journal of tropical medicine and hygiene,2006

5. Detecting infection hotspots: Modeling the surveillance challenge for elimination of lymphatic filariasis;PLoS neglected tropical diseases,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3