Author:
Millan Cinthia R.,Francis Martina,Thompson Valery F.,Thaker Tarjani M.,Tomasiak Thomas M.
Abstract
ABSTRACTThe ATP binding cassette (ABC) family of transporters move diverse small molecules across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The allosteric mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) presents an unresolved question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved motif called the peptide sensor in coordinating domain rearrangements in the heterodimeric peptide exporter fromThermus thermophilus, TmrAB. Mutations in the peptide sensor motif alter ATP hydrolysis rates as well as substrate release. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects likely destabilize a network between the peptide sensor motif and the Q-loop and X-loop, two known allosteric elements in the NBDs. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the peptide sensor motifs help coordinate the transition of TmrAB to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.
Publisher
Cold Spring Harbor Laboratory