AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics

Author:

Sharifi-Noghabi Hossein,Peng Shuman,Zolotareva Olga,Collins Colin C.,Ester Martin

Abstract

AbstractMotivationThe goal of pharmacogenomics is to predict drug response in patients using their single- or multi-omics data. A major challenge is that clinical data (i.e. patients) with drug response outcome is very limited, creating a need for transfer learning to bridge the gap between large pre-clinical pharmacogenomics datasets (e.g. cancer cell lines), as a source domain, and clinical datasets as a target domain. Two major discrepancies exist between pre-clinical and clinical datasets: 1) in the input space, the gene expression data due to difference in the basic biology, and 2) in the output space, the different measures of the drug response. Therefore, training a computational model on cell lines and testing it on patients violates the i.i.d assumption that train and test data are from the same distribution.ResultsWe propose Adversarial Inductive Transfer Learning (AITL), a deep neural network method for addressing discrepancies in input and output space between the pre-clinical and clinical datasets. AITL takes gene expression of patients and cell lines as the input, employs adversarial domain adaptation and multi-task learning to address these discrepancies, and predicts the drug response as the output. To the best of our knowledge, AITL is the first adversarial inductive transfer learning method to address both input and output discrepancies. Experimental results indicate that AITL outperforms state-of-the-art pharmacogenomics and transfer learning baselines and may guide precision oncology more accurately.Availability of codes and supplementary materialhttps://github.com/hosseinshn/AITLContactccollins@prostatecentre.comandester@cs.sfu.ca

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3