Coupling of Ca2+ and voltage activation in BK channels through the αB helix/voltage sensor interface

Author:

Geng Yanyan,Deng Zengqin,Zhang Guohui,Budelli Gonzalo,Butler Alice,Yuan Peng,Cui Jianmin,Salkoff Lawrence,Magleby Karl L.

Abstract

AbstractLarge conductance Ca2+ and voltage activated K+ (BK) channels control membrane excitability in many cell types. BK channels are tetrameric. Each subunit is comprised of a voltage sensor domain (VSD), a central pore gate domain, and a large cytoplasmic domain (CTD) that contains the Ca2+ sensors. While it is known that BK channels are activated by voltage and Ca2+, and that voltage and Ca2+ activations interact, less is known about the mechanisms involved. We now explore mechanism by examining the gating contribution of an interface formed between the VSDs and the αB helices located at the top of the CTDs. Proline mutations in the αB helix greatly decreased voltage activation while having negligible effects on gating currents. Analysis with the HCA model indicated a decreased coupling between voltage sensors and pore gate. Proline mutations decreased Ca2+ activation for both Ca2+ bowl and RCK1 Ca2+ sites, suggesting that both high affinity Ca2+ sites transduce their effect, at least in part, through the αB helix. Mg2+ activation was also decreased. The crystal structure of the CTD with proline mutation L390P showed a flattening of the first helical turn in the αB helix compared to WT, without other notable differences in the CTD, indicating structural change from the mutation was confined to the αB helix. These findings indicate that an intact αB helix/VSD interface is required for effective coupling of Ca2+ binding and voltage depolarization to pore opening, and that shared Ca2+ and voltage transduction pathways involving the αB helix may be involved.SignificanceLarge conductance BK (Slo1) K+ channels are activated by voltage, Ca2+, and Mg2+ to modulate membrane excitability in neurons, muscle, and other cells. BK channels are of modular design, with pore-gate and voltage sensors as transmembrane domains and a large cytoplasmic domain CTD containing the Ca2+ sensors. Previous observations suggest that voltage and Ca2+ sensors interact, but less is known about this interaction and its involvement in the gating process. We show that a previously identified structural interface between the CTD and voltage sensors is required for effective activation by both voltage and Ca2+, suggesting that these processes may share common allosteric activation pathways. Such knowledge should help explain disease processes associated with BK channel dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3