A semi-empirical model of the aerodynamics of manoeuvring insect flight

Author:

Walker Simon M.,Taylor Graham K.ORCID

Abstract

Blade element modelling provides a quick analytical method for estimating the aerodynamic forces produced during insect flight, but such models have yet to be tested rigorously using kinematic data recorded from free-flying insects. This is largely because of the paucity of detailed free-flight kinematic data, but also because analytical limitations in existing blade element models mean that they cannot incorporate the complex three-dimensional movements of the wings and body that occur during insect flight. Here, we present a blade element model with empirically-fitted aerodynamic force coefficients that incorporates the full three-dimensional wing kinematics of manoeuvring Eristalis hoverflies, including torsional deformation of their wings. The two free parameters were fitted to a large free-flight dataset comprising N = 26, 541 wingbeats, and the fitted model captured approximately 80% of the variation in the stroke-averaged forces in the sagittal plane. We tested the robustness of the model by subsampling the data, and found little variation in the parameter estimates across subsamples comprising 10% of the flight sequences. The simplicity and generality of the model that we present is such that it can be readily applied to kinematic datasets from other insects, and also used for the study of insect flight dynamics.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Spectral sensitivities of retinular cells measured in intact, living flies by an optical method;J. Comp. Physiol,1979

2. An ultraviolet photoreceptor in a Dipteran compound eye

3. Aerodynamic capabilities of flies, as revealed by a new technique;J. Exp. Biol,1981

4. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

5. Unsteady aerodynamic performance of model wings at low Reynolds numbers;J. Exp. Biol,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3