Changes in the gene expression profile during spontaneous migraine attacks

Author:

Kogelman Lisette J.A.ORCID,Falkenberg KatrineORCID,Buil AlfonsoORCID,Erola PauORCID,Courraud JulieORCID,Laursen Susan Svane,Michoel TomORCID,Olesen JesORCID,Hansen Thomas F.ORCID

Abstract

AbstractObjectiveMigraine occurs in clearly defined attacks and thus lends itself to investigate changes during and outside attack. Gene expression fluctuates according to environmental and endogenous events and therefore is likely to reveal changes during a migraine attack. We examined the hypothesis that changes in RNA expression during and outside of a spontaneous migraine attack exist which are specific to the migraine attack.MethodsWe collected blood samples from 27 migraine patients during an attack, two hours after treatment with subcutaneous sumatriptan, on a headache-free day and after a cold pressor test. All patients were deeply phenotyped, including headache characteristics and treatment effect during the sampling. RNA-Sequencing, genotyping, and steroid profiling was performed on all samples. RNA-Sequences were analyzed at gene level (differential expression analysis) and at network level, and we integrated transcriptomic and genomic data.ResultsWe found 29 differentially expressed (DE) genes between ‘attack’ and ‘after treatment’, after subtracting non-migraine specific genes, i.e. genes related to a general pain/stress response. DE genes were functioning in fatty acid oxidation, signaling pathways and immune-related pathways. Network analysis revealed molecular mechanisms affected by change in gene interactions during the migraine attack, e.g. ‘ion transmembrane transport’ and ‘response to stress’. Integration of genomic and transcriptomic data revealed pathways related to sumatriptan treatment, i.e. ‘5HT1 type receptor mediated signaling pathway’.InterpretationUsing a paired-sample design, we uniquely investigated intra-individual changes in the gene expression during a migraine attack. We revealed both genes and pathway potentially involved in the pathophysiology of migraine.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3