Cooperative and non-cooperative behaviour in the exploitation of a common renewable resource with environmental stochasticity

Author:

Hackney Michael,James AlexORCID,Plank Michael J.ORCID

Abstract

AbstractClassical fisheries biology aims to optimise fisheries-level outcomes, such as yield or profit, by controlling the fishing effort. This can be adjusted to allow for the effects of environmental stochasticity, or noise, in the population dynamics. However, when multiple fishing entities, which could represent countries, commercial organisations, or individual vessels, can autonomously determine their own fishing effort, the the optimal action for one fishing entity depends on the actions of others. Coupled with noise in the population dynamics, and with decisions about fishing effort made repeatedly, this becomes an iterated stochastic game. We tackle this problem using the tools of stochastic optimisation, first for the monopolist’s problem and then for the duopolist’s problem. In each case, we derive optimal policies that specify the best level of fishing effort for a given stock biomass. Under these optimal policies, we can calculate the equilibrium stock biomass, the expected long-term return from fishing and the probability of stock collapse. We also show that there is a threshold stock biomass below which it is optimal to stop fishing until the stock recovers. We then develop an agent-based model to test the effectiveness of simple strategies for responding to deviations by an opponent from a cooperative fishing level. Our results show that the economic value of the fishery to a monopolist, or to a consortium of fishing agents, is robust to a certain level of noise. However, without the means of making agreements about fishing effort, even low levels of noise make sustained cooperation between autonomous fishing agents difficult.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. J. Hjort , Fluctuations in the great fisheries of northern Europe viewed in the light of biological research, ICES, 1914.

2. The replenishment of coral reef fish populations;Oceanogr Mar Biol Annu Rev,1988

3. Climate Variability, Fish, and Fisheries

4. Fisheries: climate variability and North Sea cod;Nature,2000

5. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3