Symmetry breaking and de-novo axis formation in hydra spheroids: the microtubule cytoskeleton as a pivotal element

Author:

Sander Heike,Pasula Aravind,Sander Mathias,Giri Varun,Terriac Emmanuel,Lautenschlaeger Franziska,Ott Albrecht

Abstract

The establishment of polarity in cells and tissues is one of the first steps in multicellular development. The ‘eternal embryo’ hydra can completely regenerate from a disorganized cell cluster or a small fragment of tissue of about 10, 000 cells. During regeneration, the cells first form a hollow cell spheroid, which then undergoes de-novo symmetry breaking to irreversibly polarize. Here, we address the symmetry-related shape changes. Prior to axis establishment, the spheroid of regenerating cells presents inflation oscillations on several timescales that are isotropic in space. There are transient periods of fluctuations in defined arbitrary directions, until these undergo a clearly identified, irreversible transition to directed fluctuations along the future main axis of the regenerating hydra. Stabilized cytosolic actin structures disappear during the de-novo polarization, while polymerized microtubules remain. In our observations applied drugs that depolymerize actin filaments accelerate the symmetry breaking process, while drug-stabilized actin filaments prevent it. Nocodazole-depolymerized microtubules prevent symmetry breaking, but regeneration can be rescued by the microtubule-stabilizing drug paclitaxel at concentrations where microtubular structures start to reappear. We discuss the possibility that mechanical fluctuations induce the orientation and position of microtubules, which contribute to β-catenin nuclear translocation, to increase the organizer-forming-potential of the cells. Our data suggest that in regenerating hydra spheroids, microtubules play a pivotal role in the cooperative polarization process of the self-organizing hydra spheroid.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3