Maternal genome dominance in early plant embryogenesis

Author:

Alaniz-Fabián Jaime,Xiang Daoquan,Toro-De León Gerardo Del,Orozco-Nieto Axel,Gao Peng,Sharpe Andrew,Kochian Leon V.,Selvaraj Gopalan,Springer Nathan,Abreu-Goodger CeiORCID,Datla Raju,Gillmor C. StewartORCID

Abstract

AbstractPrevious studies have alternately supported and discounted the hypothesis that the maternal genome plays a predominant role in early embryogenesis in plants. We used 24 embryo defective (emb) mutants of Arabidopsis thaliana to test for maternal and paternal effects in early embryogenesis. 5 emb mutants had equal maternal and paternal effects, 5 showed maternal effects and weak paternal effects, and the remaining 14 emb mutants conditioned only maternal effects, demonstrating a more important role for the maternal allele for most of these EMB genes. To assess genome-wide maternal and paternal contributions to early embryos, we produced allele-specific transcriptomes from zygote to mature stage embryos derived from reciprocal crosses of Columbia-0 and Tsu-1, a hybrid combination we show to be a faithful proxy for isogenic Columbia-0. Parent-of-origin analysis of these transcriptomes revealed a reciprocal maternal bias in thousands of genes from the zygote to octant stage. This bias greatly diminished by the globular stage, and was absent at later stages. Comparison with egg cell transcriptomes revealed no correlation between transcript levels in the egg and maternal bias in pre-globular embryos, suggesting that the maternal bias observed in early embryos is due to preferential zygotic transcription of maternal alleles. Taken together, the functional and transcriptome data presented here support a predominant role for the maternal genome in early Arabidopsis embryogenesis.SignificanceIn both animals and plants, the zygote is produced by the union of the egg and sperm cells. In animals, it is well accepted that mRNAs and proteins from the egg direct the first steps of embryogenesis. Here we present genetic and genomic experiments that support a predominant role for the maternal genome in early embryogenesis of plants, as well. In contrast to animals, our data suggest that this maternal influence is primarily derived not from inheritance of egg transcripts, but from preferential transcription of maternal alleles in the zygote and early embryo. This transient maternal zygotic bias may reflect an ancestral condition to diminish paternal influence on early embryogenesis in outcrossing plants.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3