Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate

Author:

Shah Pranav N.M.ORCID,Filman David J.ORCID,Karunatilaka Krishanthi S.,Hesketh Emma L.ORCID,Groppelli ElisabettaORCID,Strauss MikeORCID,Hogle James M.ORCID

Abstract

ABSTRACTThe virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the “late” 135S particles have detectable levels of the VP1 N-terminus trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.AUTHOR SUMMARYNonenveloped viruses need to provide mechanisms that allow their genomes to be delivered across membrane. This process remains poorly understood. For enterovirus such as poliovirus, genome delivery involves a program of conformational changes that include expansion of the particle and externalization of two normal internal peptides, VP4 and the VP1 N-terminus, which then insert into the cell membrane, triggering endocytosis and the creation of pores that facilitate the transfer of the viral RNA genome across the endosomal membrane. This manuscript describes five high-resolution cryo-EM structures of altered poliovirus particles that represent a number of intermediates along this pathway. The structures reveal several surprising findings, including the discovery of a new intermediate that is expanded but has not yet externalized the membrane interactive peptides, the clear identification of a unique exit site VP1 N-terminus, the demonstration that the externalized VP1 N-terminus partitions between two different sites in a temperature-dependent fashion, direct visualization of an amphipathic helix at the N-terminus of VP1 in an ideal position for interaction with cellular membranes, and the observation that a significant portion of VP4 remains inside the particle and accounts for a feature that had been previously ascribed to part of the viral RNA. These findings represent significant additions to our understanding of the cell entry process of an important class of human pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3