Virtual connectomic datasets in Alzheimer’s Disease and aging using whole-brain network dynamics modelling

Author:

Arbabyazd Lucas,Shen Kelly,Wang Zheng,Hofmann-Apitius Martin,Ritter Petra,McIntosh Anthony R.,Battaglia Demian,Jirsa Viktor,

Abstract

AbstractLarge neuroimaging datasets, including information about structural (SC) and functional connectivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms for automated stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features (e.g., lack of concurrent DTI SC and resting-state fMRI FC measurements for many of the subjects).We propose here to address the missing connectivity features problem by introducing strategies based on computational whole-brain network modeling. Using two datasets, the ADNI dataset and a healthy aging dataset, for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual FC” from empirical SC or “virtual SC” from empirical FC), by using self-consistent simulations of linear and nonlinear brain network models. Furthermore, by performing machine learning classification (to separate age classes or control from patient subjects) we show that algorithms trained on virtual connectomes achieve discrimination performance comparable to when trained on actual empirical data; similarly, algorithms trained on virtual connectomes can be used to successfully classify novel empirical connectomes. Completion algorithms can be combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily large number, opening the way to the generation of virtual connectomic datasets with network connectivity information comparable to the one of the original data.Significance statementPersonalized information on anatomical connectivity (“structural connectivity”, SC) or coordinated resting state activation patterns (“functional connectivity’, FC) is a source of powerful neuromarkers to detect and track the development of neurodegenerative diseases. However, there are often “gaps” in the available information, with only SC (or FC) being known but not FC (or SC). Exploiting whole-brain modelling, we show that gap in databases can be filled by inferring the other connectome through computational simulations. The generated virtual connectomic data carry information analogous to the one of empirical connectomes, so that machine learning algorithms can be trained on them. This opens the way to the release in the future of cohorts of “virtual patients”, complementing traditional datasets in data-driven predictive medicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3