Hybridization capture of larch (Larix Mill) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forests

Author:

Schulte LuiseORCID,Bernhardt NadineORCID,Stoof-Leichsenring Kathleen R.ORCID,Zimmermann Heike H.ORCID,Pestryakova Luidmila A.,Epp Laura S.ORCID,Herzschuh UlrikeORCID

Abstract

AbstractSiberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the world. It is important to understand the past dynamics of larches, in order to predict their likely response to a changing climate in the future. Sedimentary ancient DNA extracted from lake sediment cores can serve as archives to study past vegetation. However, the traditional method of studying sedimentary ancient DNA – metabarcoding – focuses on small fragments which cannot resolve Larix to species level nor allow the detailed study of population dynamics. Here we use shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome to study Larix populations from a sediment core reaching back up to 6700 years in age from the Taymyr region in northern Siberia. In comparison to shotgun sequencing, hybridization capture results in an increase of taxonomically classified reads by several orders of magnitude and the recovery of near-complete chloroplast genomes of Larix. Variation in the chloroplast reads corroborate an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. Since then, both species have been present at the site, although larch populations have decreased with only a few trees remaining in what was once a forested area. This study demonstrates for the first time that hybridization capture applied to ancient DNA from lake sediments can provide genome-scale information and is a viable tool for studying past changes of a specific taxon.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3