Author:
Poudineh Mahla,Maikawa Caitlin L.,Ma Eric Yue,Pan Jing,Mamerow Dan,Hang Yan,Baker Sam W.,Beirami Ahmad,Eisenstein Michael,Kim Seung,Vučković Jelena,Appel Eric A.,Soh H. Tom
Abstract
AbstractReal-time biosensors that can continuously measure circulating biomolecules in vivo would provide valuable insights into a patients’ health status and their response to therapeutics even when there is considerable variability in pharmacokinetics and pharmacodynamics across patient populations. Unfortunately, current real-time biosensors are limited to a handful of analytes (e.g. glucose and blood oxygen) and are limited in sensitivity (high nanomolar). In this work, we describe a general approach for continuously and simultaneously measuring multiple analytes with picomolar sensitivity and sub-second temporal resolution. As exemplars, we report the simultaneous detection of glucose and insulin at picomolar concentrations in live diabetic rats. Using our system, we demonstrate the capacity to resolve inter-individual differences in the pharmacokinetic responses to insulin and discriminate profiles from different insulin formulations at a high temporal resolution. Critically, our approach is general and could be readily modified to continuously and simultaneously measure other circulating analytes in vivo by swapping the affinity reagents, thus making it a versatile tool for biomedical research.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献