Context-modular memory networks support high-capacity, flexible, and robust associative memories

Author:

Podlaski William F.ORCID,Agnes Everton J.ORCID,Vogels Tim P.ORCID

Abstract

Context, such as behavioral state, is known to modulate memory formation and retrieval, but is usually ignored in associative memory models. Here, we propose several types of contextual modulation for associative memory networks that greatly increase their performance. In these networks, context inactivates specific neurons and connections, which modulates the effective connectivity of the network. Memories are stored only by the active components, thereby reducing interference from memories acquired in other contexts. Such networks exhibit several beneficial characteristics, including enhanced memory capacity, high robustness to noise, increased robustness to memory overloading, and better memory retention during continual learning. Furthermore, memories can be biased to have different relative strengths, or even gated on or off, according to contextual cues, providing a candidate model for cognitive control of memory and efficient memory search. An external context-encoding network can dynamically switch the memory network to a desired state, which we liken to experimentally observed contextual signals in prefrontal cortex and hippocampus. Overall, our work illustrates the benefits of organizing memory around context, and provides an important link between behavioral studies of memory and mechanistic details of neural circuits.SIGNIFICANCEMemory is context dependent — both encoding and recall vary in effectiveness and speed depending on factors like location and brain state during a task. We apply this idea to a simple computational model of associative memory through contextual gating of neurons and synaptic connections. Intriguingly, this results in several advantages, including vastly enhanced memory capacity, better robustness, and flexible memory gating. Our model helps to explain (i) how gating and inhibition contribute to memory processes, (ii) how memory access dynamically changes over time, and (iii) how context representations, such as those observed in hippocampus and prefrontal cortex, may interact with and control memory processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3