Estimation of Full-Length TprK Diversity in Treponema pallidum subspecies pallidum

Author:

Addetia Amin,Lin Michelle,Phung Quynh,Xie Hong,Huang Meei-Li,Ciccarese Giulia,Dal Conte Ivano,Cusini Marco,Drago Francesco,Giacani Lorenzo,Greninger Alexander L.

Abstract

AbstractImmune evasion and disease progression of Treponema pallidum subspecies pallidum are associated with sequence diversity in the hypervariable, putative outer membrane protein TprK. Previous attempts to study variation within TprK have sequenced at depths insufficient to fully appreciate the hypervariable nature of the protein, failed to establish linkage between the protein’s 7 variable regions, or were conducted on strains passed through rabbits. As a consequence, a complete profiling of tprK during infection in the human host is still lacking. Furthermore, prior studies examining how T. pallidum uses its repertoire of genomic donor sites to generate diversity within the V regions of the tprK also yielded a partial understanding of this process, due to the limited number of tprK alleles examined. In this study, we used short- and long-read deep sequencing to directly characterize full-length tprK alleles from T. pallidum collected from early lesions of patients attending two STD clinics in Italy. Our data, combined with recent data available on Chinese T. pallidum strains, show the near complete absence of overlap in TprK sequences among the 41 strains profiled to date. Moreover, our data allowed us to redefine the boundaries of tprK V regions, identify 55 donor sites, and estimate the total number of TprK variants that T. pallidum can potentially generate. Altogether, our results support how T. pallidum TprK antigenic variation system is an unsurmountable obstacle for the human immune system to naturally achieve infection eradication, and reiterate the importance of this mechanism for pathogen persistence in the host.ImportanceSyphilis continues to be a significant public health issue in both low- and high-income nations, including the United States, where the number of infectious syphilis cases has increased dramatically over the past five years. T. pallidum, the causative agent of syphilis, encodes an outer membrane protein TprK that undergoes segmental gene conversion to constantly create new sequences. We performed deep TprK profiling to understand full-length TprK diversity in T. pallidum-positive clinical specimens and compared these to all samples for which TprK deep sequencing is available. We found almost no overlap in TprK sequences between different patients. We further estimate that the total baseline junctional diversity of full-length TprK rivals that of current estimates of the human adaptive immune system. These data underscore the immunoevasive ability of TprK that allows T. pallidum to establish lifelong infection.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Centers for Disease Control and Prevention (CDC). Primary and secondary syphilis--United States, 2005-2013;MMWR Morb Mortal Wkly Rep,2014

2. Centers for Disease Control and Prevention. Syphilis Surveillance Supplement 2013–2017. Atlanta, U.S.: Department of Health and Human Services; 2019.

3. Syphilis: Re-emergence of an old foe

4. Syphilis: old problem, new strategy

5. Primary and secondary syphilis--United States, 1997;Centers for Disease Control and Prevention (CDC);MMWR Morb Mortal Wkly Rep,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3