Author:
Garayburu-Caruso Vanessa A.,Stegen James C.,Song Hyun-Seob,Renteria Lupita,Wells Jaqueline,Garcia Whitney,Resch Charles T.,Goldman Amy,Chu Rosalie,Toyoda Jason,Graham Emily B.
Abstract
AbstractOrganic matter (OM) metabolism in freshwater ecosystems is a critical source of uncertainty in global biogeochemical cycles, yet aquatic OM cycling remains poorly understood. Here, we present the first work to explicitly test OM thermodynamics as a key regulator of aerobic respiration, challenging long-held beliefs that organic carbon and oxygen concentrations are the primary determinants of respiration rates. We pair controlled microcosm experiments with ultrahigh-resolution OM characterization to demonstrate a clear relationship between OM thermodynamic favorability and aerobic respiration under carbon limitation. We also demonstrate a shift in the regulation of aerobic respiration from OM thermodynamics to nitrogen content when carbon is in excess, highlighting a central role for OM thermodynamics in aquatic biogeochemical cycling particularly in carbon-limited ecosystems. Our work therefore illuminates a structural gap in aquatic biogeochemical models and presents a new paradigm in which OM thermodynamics and nitrogen content interactively govern aerobic respiration.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献