Utilizing top-down hyperspectral imaging for monitoring genotype and growth conditions in maize

Author:

Tirado Sara B.ORCID,St Dennis Susan,Enders Tara A.ORCID,Springer Nathan M.ORCID

Abstract

AbstractThere is significant enthusiasm about the potential for hyperspectral imaging to document variation among plant species, genotypes or growing conditions. However, in many cases the application of hyperspectral imaging is performed in highly controlled situations that focus on a flat portion of a leaf or side-views of plants that would be difficult to obtain in field settings. We were interested in assessing the potential for applying hyperspectral imaging to document variation in genotypes or abiotic stresses in a fashion that could be implemented in field settings. Specifically, we focused on collecting top-down hyperspectral images of maize seedlings similar to a view that would be collected in a typical maize field. A top-down image of a maize seedling includes a view into the funnel-like whorl at the center of the plant with several leaves radiating outwards. There is substantial variability in the reflectance profile of different portions of this plant. To deal with the variability in reflectance profiles that arises from this morphology we implemented a method that divides the longest leaf into 10 segments from the center to the leaf tip. We show that using these segments provides improved ability to discriminate different genotypes or abiotic stress conditions (heat, cold or salinity stress) for maize seedlings. We also found substantial differences in the ability to successfully classify abiotic stress conditions among different inbred genotypes of maize. This provides an approach that can be implemented to help classify genotype and environmental variation for maize seedlings that could be implemented in field settings.Significance StatementThis study describes the importance of using spatial information for the analysis of hyperspectral images of maize seedling. The segmentation of maize seedling leaves provides improved resolution for using hyperspectral variation to document genotypic and environmental variation in maize.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3