Estimating the rate of cell type degeneration from epigenetic sequencing of cell-free DNA

Author:

Caggiano ChristaORCID,Celona Barbara,Garton FleurORCID,Mefford Joel,Black Brian,Lomen-Hoerth Catherine,Dahl Andrew,Zaitlen Noah

Abstract

AbstractCirculating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a promising non-invasive biomarker for cell death. Here, we develop a method to accurately estimate the relative abundances of cell types contributing to cfDNA. We leverage the distinct DNA methylation profile of each cell type throughout the body. Decomposing the cfDNA mixture is difficult, as fragments from relevant cell types may only be present in a small amount. We propose an algorithm, CelFiE, that estimates cell type proportion from both whole genome cfDNA input and reference data. CelFiE accommodates low coverage data, does not rely on CpG site curation, and estimates contributions from multiple unknown cell types that are not available in reference data. In simulations we show that CelFiE can accurately estimate known and unknown cell type of origin of cfDNA mixtures in low coverage and noisy data. Simulations also demonstrate that we can effectively estimate cfDNA originating from rare cell types composing less than 0.01% of the total cfDNA. To validate CelFiE, we use a positive control: cfDNA extracted from pregnant and non-pregnant women. CelFiE estimates a large placenta component specifically in pregnant women (p = 9.1 × 10−5). Finally, we use CelFiE to decompose cfDNA from ALS patients and age matched controls. We find increased cfDNA concentrations in ALS patients (p = 3.0 × 10−3). Specifically, CelFiE estimates increased skeletal muscle component in the cfDNA of ALS patients (p = 2.6 × 10−3), which is consistent with muscle impairment characterizing ALS. Quantification of skeletal muscle death in ALS is novel, and overall suggests that CelFiE may be a useful tool for biomarker discovery and monitoring of disease progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3