Abstract
AbstractSeveral distinct fluid flow phenemena occur in solid tumours, including intravascular blood flow and interstitial convection. To probe low-velocity flow in tumors resulting from raised interstitial fluid pressure, we have developed a novel magnetic resonance imaging (MRI) technique named convection-MRI. It uses a phase-contrast acquisition with a dual-inversion vascular nulling preparation to separate intra- and extra-vascular flow. Here, we report the results of experiments in flow phantoms, numerical simulations and tumor xenograft models to investigate the technical feasibility of convection-MRI. We report a good correlation between estimates of effective fluid pressure from convection-MRI with gold-standard, invasive measurements of interstitial fluid pressure in mouse models of human colorectal carcinoma and show that convection-MRI can provide insights into the growth and response to vascular-targeting therapy in colorectal cancers.
Publisher
Cold Spring Harbor Laboratory